Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 591, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238318

ABSTRACT

During the COVID-19 pandemic, levels of seasonal influenza virus circulation were unprecedentedly low, leading to concerns that a lack of exposure to influenza viruses, combined with waning antibody titres, could result in larger and/or more severe post-pandemic seasonal influenza epidemics. However, in most countries the first post-pandemic influenza season was not unusually large and/or severe. Here, based on an analysis of historical influenza virus epidemic patterns from 2002 to 2019, we show that historic lulls in influenza virus circulation had relatively minor impacts on subsequent epidemic size and that epidemic size was more substantially impacted by season-specific effects unrelated to the magnitude of circulation in prior seasons. From measurements of antibody levels from serum samples collected each year from 2017 to 2021, we show that the rate of waning of antibody titres against influenza virus during the pandemic was smaller than assumed in predictive models. Taken together, these results partially explain why the re-emergence of seasonal influenza virus epidemics was less dramatic than anticipated and suggest that influenza virus epidemic dynamics are not currently amenable to multi-season prediction.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Viruses , Humans , Influenza, Human/epidemiology , Seasons , Pandemics
2.
medRxiv ; 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36415458

ABSTRACT

Background: During the first two years of the COVID-19 pandemic, the circulation of seasonal influenza viruses was unprecedentedly low. This led to concerns that the lack of immune stimulation to influenza viruses combined with waning antibody titres could lead to increased susceptibility to influenza in subsequent seasons, resulting in larger and more severe epidemics. Methods: We analyzed historical influenza virus epidemiological data from 2003-2019 to assess the historical frequency of near-absence of seasonal influenza virus circulation and its impact on the size and severity of subsequent epidemics. Additionally, we measured haemagglutination inhibition-based antibody titres against seasonal influenza viruses using longitudinal serum samples from 165 healthy adults, collected before and during the COVID-19 pandemic, and estimated how antibody titres against seasonal influenza waned during the first two years of the pandemic. Findings: Low country-level prevalence of influenza virus (sub)types over one or more years occurred frequently before the COVID-19 pandemic and had relatively small impacts on subsequent epidemic size and severity. Additionally, antibody titres against seasonal influenza viruses waned negligibly during the first two years of the pandemic. Interpretation: The commonly held notion that lulls in influenza virus circulation, as observed during the COVID-19 pandemic, will lead to larger and/or more severe subsequent epidemics might not be fully warranted, and it is likely that post-lull seasons will be similar in size and severity to pre-lull seasons. Funding: European Research Council, Netherlands Organization for Scientific Research, Royal Dutch Academy of Sciences, Public Health Service of Amsterdam. Research in context: Evidence before this study: During the first years of the COVID-19 pandemic, the incidence of seasonal influenza was unusually low, leading to widespread concerns of exceptionally large and/or severe influenza epidemics in the coming years. We searched PubMed and Google Scholar using a combination of search terms (i.e., "seasonal influenza", "SARS-CoV-2", "COVID-19", "low incidence", "waning rates", "immune protection") and critically considered published articles and preprints that studied or reviewed the low incidence of seasonal influenza viruses since the start of the COVID-19 pandemic and its potential impact on future seasonal influenza epidemics. We found a substantial body of work describing how influenza virus circulation was reduced during the COVID-19 pandemic, and a number of studies projecting the size of future epidemics, each positing that post-pandemic epidemics are likely to be larger than those observed pre-pandemic. However, it remains unclear to what extent the assumed relationship between accumulated susceptibility and subsequent epidemic size holds, and it remains unknown to what extent antibody levels have waned during the COVID-19 pandemic. Both are potentially crucial for accurate prediction of post-pandemic epidemic sizes.Added value of this study: We find that the relationship between epidemic size and severity and the magnitude of circulation in the preceding season(s) is decidedly more complex than assumed, with the magnitude of influenza circulation in preceding seasons having only limited effects on subsequent epidemic size and severity. Rather, epidemic size and severity are dominated by season-specific effects unrelated to the magnitude of circulation in the preceding season(s). Similarly, we find that antibody levels waned only modestly during the COVID-19 pandemic.Implications of all the available evidence: The lack of changes observed in the patterns of measured antibody titres against seasonal influenza viruses in adults and nearly two decades of epidemiological data suggest that post-pandemic epidemic sizes will likely be similar to those observed pre-pandemic, and challenge the commonly held notion that the widespread concern that the near-absence of seasonal influenza virus circulation during the COVID-19 pandemic, or potential future lulls, are likely to result in larger influenza epidemics in subsequent years.

3.
Vaccines (Basel) ; 9(7)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34358138

ABSTRACT

Antibody responses against the influenza A virus hemagglutinin (HA)-protein are studied intensively because they can protect against (re)infection. Previous studies have focused on antibodies targeting the head or stem domains, while other possible specificities are often not taken into account. To study such specificities, we developed a diverse set of HA-domain proteins based on an H1N1pdm2009-like influenza virus strain, including monomeric head and trimeric stem domain, as well as the full HA-trimer. These proteins were used to study the B cell and antibody responses in six healthy human donors. A large proportion of HA-trimer B cells bound exclusively to HA-trimer probe (54-77%), while only 8-18% and 9-23% were able to recognize the stem or head probe, respectively. Monoclonal antibodies (mAbs) were isolated and three of these mAbs, targeting the different domains, were characterized in-depth to confirm the binding profile observed in flow cytometry. The head-directed mAb, targeting an epitope distinct from known head-specific mAbs, showed relatively broad H1N1 neutralization and the stem-directed mAb was able to broadly neutralize diverse H1N1 viruses. Moreover, we identified a trimer-directed mAb that did not compete with known head or stem domain specific mAbs, suggesting that it targets an unknown epitope or conformation of influenza virus' HA. These observations indicate that the described method can characterize the diverse antibody response to HA and might be able to identify HA-specific B cells and antibodies with previously unknown specificities that could be relevant for vaccine design.

4.
Eur J Neurosci ; 16(12): 2462-8, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12492441

ABSTRACT

Repeated exposure to drugs of abuse induces behavioural sensitization, i.e. a persistent hypersensitivity to the psychomotor stimulant effects of these drugs. This may be the result of increased responsiveness, to drugs, of mesostriatal dopamine systems and their projections, but it has also been suggested that acute and sensitized behavioural responses to psychostimulant drugs involve activation of distinct neuronal circuits. In order to distinguish between these possibilities, we studied amphetamine-induced c-fos immunoreactivity in subregions of rat striatum (patch and matrix compartments of caudate-putamen and nucleus accumbens core and shell) in drug-naive rats, as well as during long-term expression of amphetamine sensitization. We found that, in sensitized animals, amphetamine (1.0 mg/kg) evoked an increase in the ratio of c-fos-immunopositive cells in striatal patch and matrix compartments, suggesting a preferential involvement of striatal patches in the sensitized response to amphetamine. In drug-naive rats, amphetamine (0.5-5.0 mg/kg) dose-dependently increased c-fos expression in all striatal subregions. Remarkably, the highest dose of amphetamine also evoked an increase in patch : matrix ratio of c-fos immunoreactivity. In nucleus accumbens core and shell of amphetamine- and saline-pretreated animals, amphetamine (1.0 mg/kg) evoked comparable increases in c-fos expression. These data indicate that distinct striatal compartments display a differential sensitivity to amphetamine in both drug-naive and amphetamine-sensitized animals. In addition, they suggest that the shift in amphetamine-induced c-fos expression from striatal matrix to patches in sensitized animals is the consequence of a change in the sensitivity to amphetamine, rather than a long-term circuitry reorganization that is exclusive to the sensitized state.


Subject(s)
Amphetamine-Related Disorders/metabolism , Amphetamine/pharmacology , Drug Tolerance/physiology , Neostriatum/drug effects , Neurons/drug effects , Neuropil/drug effects , Nucleus Accumbens/drug effects , Amphetamine-Related Disorders/physiopathology , Animals , Dose-Response Relationship, Drug , Immunohistochemistry , Male , Neostriatum/metabolism , Neostriatum/physiopathology , Neurons/metabolism , Neuropil/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/physiopathology , Proto-Oncogene Proteins c-fos/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar , Up-Regulation/drug effects , Up-Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...